

Available online at www.jomaar.com

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH
 E ISSN: 2689 3541; P ISSN 2689 355X

Volume:06; Issue:01 (2024)

1 | P a g e

Based on an analysis of Amazon S3, real service simulation techniques are

used to study the latency performance of distributed storage systems

SU RIGUGE1, DR MOHAMMAD NIZAMUDDIN INAMDAR 2a
PhD Research Scholar in Engineering, Lincoln University College Malaysia

Professor in Lincoln University College Malaysia

Contact Details: a nizamuddin@lincoln.edu.my

Abstract

To create the parity nodes, current erasure codes mainly rely on data nodes. "If we can increase

the number of parity nodes, we may increase our chances of restoring the original data," the more

error tolerance there is. Because data nodes are frequently queried to aid in the repair of parity

nodes, as the number of parity nodes increases, so will the storage overhead and the burden of

repair on data nodes. For example, all data nodes in LRC [25, 26] need to be fixed if a global parity

node fails. The "increasing demands on the network's data nodes" mean that processing read

requests for data nodes will take longer. A program where regular data and FH HTSC, or High

Failure-tolerant Hierarchical Tree Structure Code."

Keywords: Data Nodes, Data Retrieval, Hierarchical Tree Structure.

INTRODUCTION

 In the past ten years, the popularity of searching, social networking, and e-commerce has all

significantly increased. We generate enormous amounts of digital data every day. Researchers and

industry are having a hard time coming up with affordable storage system designs. The need to

create large-scale distributed storage systems stems from the explosion of data. A couple of

examples are Windows Azure Storage (WAS) [3] and the Hadoop Distributed File System (HDFS)

[2]. Large data, fast computing, and cloud-scale applications may all be met with great ubiquity

and dependability with the help of these storage systems. A lot of low-cost, unstable storage

devices are frequently used in the development of large distributed storage systems, and these

individual nodes are prone to failure. There are significant benefits to Despite the scalability of

these systems, failure is the norm rather than the exception. [1] We must thus prevent frequent

system failures and ensure that these systems are robust and dependable. In the past ten years, the

popularity of searching, social networking, and e-commerce has all significantly increased. We

generate enormous amounts of digital data every day. Researchers and industry are having a hard

time coming up with affordable storage system designs. The need to create large-scale distributed

storage systems stems from the explosion of data. A couple of examples are Windows Azure

Storage (WAS) [3] and the Hadoop Distributed File System (HDFS) [2]. Large data, fast

http://www.jomaar.com/

Available online at www.jomaar.com

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH
 E ISSN: 2689 3541; P ISSN 2689 355X

Volume:06; Issue:01 (2024)

2 | P a g e

computing, and cloud-scale applications may all be met with great ubiquity and dependability with

the help of these storage systems. It is typical for a vast distributed storage system to be created, a

lot of cheap, unstable storage devices must be used, and each node in the system is prone to failure.

Although these systems have significant scalability advantages, failure is the rule rather than the

exception. [1] As a result, we must overcome frequent system failures while ensuring that these

systems" are reliable and resilient.

LITERATURE REVIEW

In large-scale distributed storage systems, redundancy is achieved through replication or erasure

coding, which provides a high level of failure protection.

GFS ensures that data can "be accessed reliably" by distributing it across three separate storage

nodes. This simple replication approach is well-suited to Google's frequent read requirements [6].

Because of the high storage requirements for a given level of fault tolerance, "replication" ensures

data availability and prevents data loss in the event of node failures.

Files with a fixed size M can "be divided into k parts (sometimes referred to as "k nodes"), each

of size M, and encoded into n encoded nodes for use in generic erasure code systems." Compared

to replication, the storage requirements for a given level of The erasure coding method can

significantly reduce dependability. Reed Solomon (RS) codes, for example, are among the most

popular and efficient storage codes due to their Maximum-Distance-Separable (MDS) feature [4].

It is a codeword-containing element in a "standard code." An MDS codeword contains n nodes,

and any k of them can be used to reassemble the entire text. In addition, we call a codeword a

systematic code if it contains original data nodes. Any feasible MDS codeword contains k original

data nodes and an equal number of "n-k parity" nodes [5]. Nodes of a codeword are typically kept

on multiple storage devices in different locations to avoid failures caused by common" reasons

Any three of the six nodes in a (6,3) "MDS codeword can decode all of the information in the

codeword, as shown in Fig. 1.1. The code is logical because d1–d3 are not coded. Large-scale

distributed storage systems that use coding frequently use a code with a predetermined set of (n,

k) parameters and a specified size for each codeword to store its data, making them easier to

manage and operate. The two types of RS codes used in HDFS and GFS II are (14,10) for Face-

HDFS books and (9,6) for GFS II [7, 8]. For actual large-scale distributed storage systems, a

codeword consists of several files with a fixed total size. We can better investigate the storage

system's. Characteristics are due to the constant coding rate.

http://www.jomaar.com/

Available online at www.jomaar.com

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH
 E ISSN: 2689 3541; P ISSN 2689 355X

Volume:06; Issue:01 (2024)

3 | P a g e

STATEMENT OF THE PROBLEM

In distributed storage systems, access latency can have a significant impact on the user experience.

Erase codes have long been known to be more reliable than replication for the same storage cost,

but it has only recently been demonstrated that "coding" may reduce access latency [9].

Chinese researchers proved for the first time that codes can reduce queueing delays [10]. Following

that, a lot of research has focused on the Redundant Scheme (RedS), which suggests that sending

redundant requests to storage systems can reduce latency. While some of the research [11] is

theoretical, others [12] use trace-driven simulations to test their findings. Shah et al. [13] describe

how duplicate queries can help to reduce latency. In [14, 15], RedS and RanS latency-cost tradeoffs

will be investigated. Coding outperforms replication in terms of delay for the same storage cost,

according to [16].

Despite these efforts, "when evaluating latency performance, certain important practical

requirements of distributed storage systems" are ignored.

When users request files of "varying sizes from a codeword," [17, 18] can only handle cases in

which each request reads the entire codeword. When a replication system receives a request for

files from multiple data nodes at the same time, no comparison will be made between replication

and coding, as was done in the case of single node reads in [19]. A more generalized version of

the "second situation is more in line with current large-scale storage." systems. Most previous

studies [20, "21, 22] assumed pure exponential service times, but our real-world observations on

Amazon S3 show that this assumption falls far short of the real-world reality, as demonstrated by

Liang et al.

In addition to data retrieval, distributed storage systems frequently repair failures [23]. GFS,

Amazon "S3," and WAS are three examples of distributed storage systems that rely heavily on

faulty hardware. Recovery procedures necessitate approximately 180TB of data transfer between

racks in Facebook HDFS per day, and there are multiple instances of high repair rates each day

http://www.jomaar.com/

Available online at www.jomaar.com

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH
 E ISSN: 2689 3541; P ISSN 2689 355X

Volume:06; Issue:01 (2024)

4 | P a g e

[24]. Increased frequency of read requests will undoubtedly lead to an increase in access latency

under the same conditions because there are fewer nodes.

to store the information requested by a read request. When a storage node fails, no data is lost, and

repair requests are prioritized over read/write operations to prevent data loss. Repair requests are

prioritised over read requests, which may have a significant impact on access times. As a result, in

this study, we will look into the impact of repair requests on read request latency.

The study aims

to identify the most effective methods for direct readings to reduce latency.

Research Questions

• What are the best methods for direct readings to minimize latency?

RESEARCH METHODOLOGY

Erasure codes and replications in distributed storage systems are one method for dealing with

system failures [29]. Codes commonly used in practice are systematic codes, which means that

each codeword contains a copy of the original data. Erasure coding can also be used in Windows

Azure storage (WAS) systems, but only when a file reaches a certain size (for example, 3GB). If

you only need a portion of the file, the storage nodes will be able to retrieve it from one of the

codeword's massive files, which are frequently extremely large in practice (we refer to these as

direct read requests) [31, 32, 33]. Requests for k-access reads, in which each request must read the

entire file in a codeword and access Another type of request involves at least k nodes. Latencies

in a distributed storage system vary according to the number of direct and k-access reads

performed. To our knowledge, this is the first time that direct readings have been thoroughly

investigated in any previous study [30].

Latency performance has been deemed "crucial in distributed storage systems, and some studies

claim that codes can minimize latency in data centers, while many other strategies have been

proposed to reduce latency in distributed storage" infrastructures. Previous research largely

ignored direct readings and focused solely on k-access accesses. There has been no research into

how RedS can speed up direct readings."RedS sends requests to all n nodes for each k-access read,

the Random Scheme (RanS) Requests are only sent randomly to those k nodes. Compared to RanS,

RedS necessitates a greater investment of time and resources. When it comes to practical

distributed storage systems, RanS is a popular choice because it is simple to implement and does

not require any additional information or resources.

RESEARCH DESIGN

http://www.jomaar.com/

Available online at www.jomaar.com

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH
 E ISSN: 2689 3541; P ISSN 2689 355X

Volume:06; Issue:01 (2024)

5 | P a g e

Redundant Request Technique (RedS) is a recently popular read scheme for (n, k) MDS-coded

storage systems [34–36]. "Regardless of how many files a read request requests in a codeword,

RedS divides it into n jobs and distributes them to each of the n nodes. When k nodes out of n have

finished providing their services, the request is considered complete, and the remaining n k jobs

are terminated immediately.

We created a RedS-based solution that can handle requests for files of various sizes while reducing

access latency. We refer to it as the Flexible Redundant Scheme (FRedS).

DATA ANALYSIS

In general, "To save your data using HTSC(D) or FH HTSC, you must combine your files into a

single large one of size M, say 1 to 3 GB, and then divide it into K parts (D, h). The fixed size M

can be calculated by combining the available storage space at each node with the parameters of

HTSC(D, h) or FH FH HTSC. (D, h). Users are frequently only interested in a subset of a "file's

uncoded systematic component," which is stored in one of the K nodes. Previous research assumed

that readers would want access to the entire contents of a "Considering that every bit of information

is now stored in the K-tree, the use of a codeword To put it simply, it is a significant change.

However, this oversimplifies the situation rather than reflecting reality. In WAS, for instance,

erasure coding is available only for files beyond a certain size threshold (say, 3GB) [31]. Most

people only use a small portion of the 3GB available, so it's understandable that it's a waste. This

corresponds to the HTSC's intended functionality (D, h). As a result, we will focus on read requests

from customers who are only interested in a subset of the information stored in one of the K data

nodes. "Inferences drawn from this research

CONCLUSION

In general, "To save your data using HTSC(D) or FH HTSC, you must combine your files into a

single large one of size M, say 1 to 3 GB, and then divide it into K parts (D, h). The fixed size M

can be calculated by combining the available storage space at each node with the parameters of

HTSC(D, h) or FH FH HTSC. (D, h). Users are frequently only interested in a subset of a "file's

encoded systematic component," which is stored in one of the K nodes. Previous research assumed

that readers would want access to the entire contents of a "Considering that every bit of information

is now stored in the K-tree, the use of a codeword to Describe it as a significant shift. However,

this oversimplifies the situation rather than reflecting reality. In WAS, for example, erasure coding

is only available for files larger than a certain size threshold (say, 3GB) [31]. Most people only

use a small portion of the 3GB available, so it's understandable that it's a waste. This corresponds

to the HTSC's intended functionality (D, h). As a result, we will focus on read requests from

http://www.jomaar.com/

Available online at www.jomaar.com

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH
 E ISSN: 2689 3541; P ISSN 2689 355X

Volume:06; Issue:01 (2024)

6 | P a g e

customers who are only interested in a subset of the information stored in one of the K data nodes."

Inferences drawn from this research.

LIMITATIONS OF THE STUDY

Because nodes and connections "must be protected," it is difficult to ensure effective security in

distributed systems. Data and messages may be lost in the network as they move between nodes.

In comparison to a single user system, the database for distributed systems is extremely complex

and difficult to manage. If all of the distributed system's nodes attempt to "communicate data at

once," the network may become overloaded.

REFERENCES

[1]. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in ACM SIGOPS

Operating Systems Review, vol. 37, no. 5. ACM, 2003, pp. 29–43.

[2]. M. Foley, “High availability HDFS,” in 28th IEEE Conference on Massive Data Storage,

MSST, vol. 12, 2012.

[3]. C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,S. Yekhanin et al., “Erasure

coding in Windows Azure storage,” in USENIX ATC, 2012, pp. 15–26.

[4]. N. B. Shah, K. Lee, and K. Ramchandran, “The MDS queue: Analysing the latency

performance of erasure codes,” in IEEE International Symposium on Information Theory

(ISIT), 2014, pp. 861–865.

[5]. B. Y. Kong, J. Jo, H. Jeong, M. Hwang, S. Cha, B. Kim, and I.-C. Park, “Low- complexity

low-latency architecture for matching of data encoded with hard systematic error-correcting

codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 7,

pp. 1648–1652, 2014.

[6]. K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchan- dran, “A solution

to the network challenges of data recovery in erasure-coded distributed storage systems: A

study on the Facebook warehouse cluster,” in Presented as part of the 5th USENIX Workshop

on Hot Topics in Storage and File Systems. USENIX, 2013.

[7]. A. Fikes, “Storage architecture and challenges,” Talk at the Faculty Summit, 2010.

[8]. D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,C. Grimes, and S.

Quinlan, “Availability in globally distributed storage sys- tems.” in OSDI, 2010, pp. 61–74.

[9]. A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchan- dran, “Network

coding for distributed storage systems,” IEEE Transactions on Information Theory, vol. 56,

no. 9, pp. 4539–4551, 2010.

[10]. K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for

distributed storage at the msr and mbr points via a product-matrix construction,” IEEE

Transactions on Information Theory, vol. 57, no. 8, pp. 5227–5239, 2011.

http://www.jomaar.com/

Available online at www.jomaar.com

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH
 E ISSN: 2689 3541; P ISSN 2689 355X

Volume:06; Issue:01 (2024)

7 | P a g e

[11]. V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and C. Suh, “Asymp- totic

interference alignment for optimal repair of MDS codes in distributed data storage,” 2011.

[12]. N. B. Shah, K. Rashmi, P. V. Kumar, and K. Ramchandran, “Explicit codes minimizing

repair bandwidth for distributed storage,” in Information Theory Workshop (ITW), 2010 IEEE.

IEEE, 2010, pp. 1–5.

[13]. V. R. Cadambe, S. A. Jafar, and H. Maleki, “Distributed data storage with minimum

storage regenerating codes-exact and functional repair are asymp- totically equally efficient,”

arXiv preprint arXiv:1004.4299, 2010.

[14]. N. B. Shah, K. Rashmi, P. V. Kumar, and K. Ramchandran, “Interference alignment in

regenerating codes for distributed storage: Necessity and code constructions,” IEEE

Transactions on Information Theory, vol. 58, no. 4, pp. 2134–2158, 2012.

[15]. A. Duminuco and E. Biersack, “A practical study of regenerating codes for peer-to-peer

backup systems,” in 29th IEEE International Conference on Dis- tributed Computing Systems.

IEEE, 2009, pp. 376–384.

[16]. A. Duminuco and E. W. Biersack, “Hierarchical codes: A flexible trade-off for erasure

codes in peer-to-peer storage systems,” Peer-to-peer Networking and Applications, vol. 3, no.

1, pp. 52–66, 2010.

[17]. M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,S. Chen, and

D. Borthakur, “Xoring elephants: Novel erasure codes for big data,” in Proceedings of the 39th

international conference on Very Large Data Bases. VLDB Endowment, 2013, pp. 325–336.

[18]. J. Li and B. Li, “Erasure coding for cloud storage systems: A survey,” Ts- inghua Science

and Technology, vol. 18, no. 3, pp. 259–272, 2013.

[19]. A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network codes for

distributed storage,” Proceedings of the IEEE, vol. 99, no. 3, pp. 476–489, 2011.

[20]. A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi, “Ef-

ficientRijndael encryption implementation with composite field arithmetic,” in Cryptographic

Hardware and Embedded Systems?CHES 2001. Springer, 2001, pp. 171–184.

[21]. J. Brutlag, “Speed matters for Google web search,” Google. June, 2009.

[22]. L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce queueing delay

in data centers,” in IEEE International Symposium on Infor- mation Theory (ISIT), 2012, pp.

2766–2770.

[23]. N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests re- duce latency?”

in the 51st Annual Allerton Conference on Communication, Control, and Computing. IEEE,

2013, pp. 731–738.

[24]. G. Liang and U. C. Kozat, “TOFEC: Achieving optimal throughput-delay trade-off of

cloud storage using erasure codes,” in Proceedings of INFOCOM. IEEE, 2014, pp. 826–834.

http://www.jomaar.com/

Available online at www.jomaar.com

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH
 E ISSN: 2689 3541; P ISSN 2689 355X

Volume:06; Issue:01 (2024)

8 | P a g e

[25]. G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in content download from

coded distributed storage systems,” IEEE Journal on Selected Areas in Communications, vol.

32, no. 5, pp. 989–997, 2014.

[26]. Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen, “Joint latency and cost optimization

for erasurecoded data center storage,” ACM SIGMETRICS Per- formance Evaluation Review,

vol. 42, no. 2, pp. 3–14, 2014.

[27]. B. Li, A. Ramamoorthy, and R. Srikant, “Mean-field-analysis of coding versus replication

in cloud storage systems,” in Proceedings of INFOCOM. IEEE, 2016.

[28]. G. Liang and U. C. Kozat, “Fast Cloud: Pushing the envelope on delay perfor- mance of

cloud storage with coding,” IEEE/ACM Transactions on Network- ing, vol. 22, no. 6, pp.

2012–2025, 2014.

[29]. G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica,D. Harlan, and E.

Harris, “Scarlett: coping with skewed content popularity in mapreduce clusters,” in

Proceedings of the sixth conference on Computer systems. ACM, 2011, pp. 287–300.

[30]. A. Kala Karun and K. Chitharanjan, “A review on hadoophdfs infrastructure extensions,”

in Conference on Information & Communication Technologies (ICT). IEEE, 2013, pp. 132–

137.

[31]. M. Harchol-Balter, Performance Modeling and Design of Computer Systems: Queueing

Theory in Action. Cambridge University Press, 2013.

[32]. H. A. David and H. N. Nagaraja, Order statistics. Wiley Online Library, 1981.

[33]. M. Rahman and L. Pearson, “Moments for order statistics in shift parameter exponential

distribution,” Journal of Statistical Research, vol. 36, no. 1, pp. 75–83, 2002.

[34]. S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their applications. John Wiley

& Sons, 1999.

[35]. Q. Shuai, V. O. K. Li, and Y. Zhu, “Performance models of access latency in cloud storage

systems,” in Fourth Workshop on Architectures and Systems for Big Data, 2014.

[36]. M. Blaum, J. Brady, J. Bruck, and J. Menon, “Evenodd: An efficient scheme for tolerating

double disk failures in raid architectures,” IEEE Transactions on Computers, vol. 44, no. 2, pp.

192–202, 1995.

[37]. L. Xu and J. Bruck, “X-code: Mds array codes with optimal encoding,” IEEE Transactions

on Information Theory, vol. 45, no. 1, pp. 272–276, 1999.

[38]. P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, andS. Sankar, “Row-

diagonal parity for double disk failure correction,” in Pro- ceedings of the 3rd USENIX

Conference on File and Storage Technologies, 2004, pp. 1–14.

http://www.jomaar.com/

Available online at www.jomaar.com

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH
 E ISSN: 2689 3541; P ISSN 2689 355X

Volume:06; Issue:01 (2024)

9 | P a g e

http://www.jomaar.com/

