
 

Available online at www.jomaar.com 

 

JOURNAL OF MANAGEMENT AND ARCHITECTURE RESEARCH  
 E ISSN: 2689 3541; P ISSN 2689 355X 

Volume:06; Issue:01 (2024) 

 

 

1 | P a g e  
 

Based on an analysis of Amazon S3, real service simulation techniques are 

used to study the latency performance of distributed storage systems 

 

SU RIGUGE1, DR MOHAMMAD NIZAMUDDIN INAMDAR 2a 
PhD Research Scholar in Engineering, Lincoln University College Malaysia 

Professor in Lincoln University College Malaysia 

Contact Details: a nizamuddin@lincoln.edu.my 

Abstract 

To create the parity nodes, current erasure codes mainly rely on data nodes. "If we can increase 

the number of parity nodes, we may increase our chances of restoring the original data," the more 

error tolerance there is. Because data nodes are frequently queried to aid in the repair of parity 

nodes, as the number of parity nodes increases, so will the storage overhead and the burden of 

repair on data nodes. For example, all data nodes in LRC [25, 26] need to be fixed if a global parity 

node fails. The "increasing demands on the network's data nodes" mean that processing read 

requests for data nodes will take longer. A program where regular data and FH HTSC, or High 

Failure-tolerant Hierarchical Tree Structure Code." 
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INTRODUCTION 

 In the past ten years, the popularity of searching, social networking, and e-commerce has all 

significantly increased. We generate enormous amounts of digital data every day. Researchers and 

industry are having a hard time coming up with affordable storage system designs. The need to 

create large-scale distributed storage systems stems from the explosion of data. A couple of 

examples are Windows Azure Storage (WAS) [3] and the Hadoop Distributed File System (HDFS) 

[2]. Large data, fast computing, and cloud-scale applications may all be met with great ubiquity 

and dependability with the help of these storage systems. A lot of low-cost, unstable storage 

devices are frequently used in the development of large distributed storage systems, and these 

individual nodes are prone to failure. There are significant benefits to  Despite the scalability of 

these systems, failure is the norm rather than the exception. [1] We must thus prevent frequent 

system failures and ensure that these systems are robust and dependable. In the past ten years, the 

popularity of searching, social networking, and e-commerce has all significantly increased. We 

generate enormous amounts of digital data every day. Researchers and industry are having a hard 

time coming up with affordable storage system designs. The need to create large-scale distributed 

storage systems stems from the explosion of data. A couple of examples are Windows Azure 

Storage (WAS) [3] and the Hadoop Distributed File System (HDFS) [2]. Large data, fast 
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computing, and cloud-scale applications may all be met with great ubiquity and dependability with 

the help of these storage systems. It is typical for a vast distributed storage system to be created, a 

lot of cheap, unstable storage devices must be used, and each node in the system is prone to failure. 

Although these systems have significant scalability advantages, failure is the rule rather than the 

exception. [1] As a result, we must overcome frequent system failures while ensuring that these 

systems" are reliable and resilient. 

 

LITERATURE REVIEW 

In large-scale distributed storage systems, redundancy is achieved through replication or erasure 

coding, which provides a high level of failure protection.  

GFS ensures that data can "be accessed reliably" by distributing it across three separate storage 

nodes. This simple replication approach is well-suited to Google's frequent read requirements [6]. 

Because of the high storage requirements for a given level of fault tolerance, "replication" ensures 

data availability and prevents data loss in the event of node failures.  

Files with a fixed size M can "be divided into k parts (sometimes referred to as "k nodes"), each 

of size M, and encoded into n encoded nodes for use in generic erasure code systems." Compared 

to replication, the storage requirements for a given level of The erasure coding method can 

significantly reduce dependability. Reed Solomon (RS) codes, for example, are among the most 

popular and efficient storage codes due to their Maximum-Distance-Separable (MDS) feature [4]. 

It is a codeword-containing element in a "standard code." An MDS codeword contains n nodes, 

and any k of them can be used to reassemble the entire text. In addition, we call a codeword a 

systematic code if it contains original data nodes. Any feasible MDS codeword contains k original 

data nodes and an equal number of "n-k parity" nodes [5]. Nodes of a codeword are typically kept 

on multiple storage devices in different locations to avoid failures caused by common" reasons 

Any three of the six nodes in a (6,3) "MDS codeword can decode all of the information in the 

codeword, as shown in Fig. 1.1. The code is logical because d1–d3 are not coded. Large-scale 

distributed storage systems that use coding frequently use a code with a predetermined set of (n, 

k) parameters and a specified size for each codeword to store its data, making them easier to 

manage and operate. The two types of RS codes used in HDFS and GFS II are (14,10) for Face-

HDFS books and (9,6) for GFS II [7, 8]. For actual large-scale distributed storage systems, a 

codeword consists of several files with a fixed total size. We can better investigate the storage 

system's. Characteristics are due to the constant coding rate. 
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STATEMENT OF THE PROBLEM  

In distributed storage systems, access latency can have a significant impact on the user experience. 

Erase codes have long been known to be more reliable than replication for the same storage cost, 

but it has only recently been demonstrated that "coding" may reduce access latency [9].  

Chinese researchers proved for the first time that codes can reduce queueing delays [10]. Following 

that, a lot of research has focused on the Redundant Scheme (RedS), which suggests that sending 

redundant requests to storage systems can reduce latency. While some of the research [11] is 

theoretical, others [12] use trace-driven simulations to test their findings. Shah et al. [13] describe 

how duplicate queries can help to reduce latency. In [14, 15], RedS and RanS latency-cost tradeoffs 

will be investigated. Coding outperforms replication in terms of delay for the same storage cost, 

according to [16]. 

Despite these efforts, "when evaluating latency performance, certain important practical 

requirements of distributed storage systems" are ignored. 

When users request files of "varying sizes from a codeword," [17, 18] can only handle cases in 

which each request reads the entire codeword. When a replication system receives a request for 

files from multiple data nodes at the same time, no comparison will be made between replication 

and coding, as was done in the case of single node reads in [19]. A more generalized version of 

the "second situation is more in line with current large-scale storage." systems. Most previous 

studies [20, "21, 22] assumed pure exponential service times, but our real-world observations on 

Amazon S3 show that this assumption falls far short of the real-world reality, as demonstrated by 

Liang et al. 

In addition to data retrieval, distributed storage systems frequently repair failures [23]. GFS, 

Amazon "S3," and WAS are three examples of distributed storage systems that rely heavily on 

faulty hardware. Recovery procedures necessitate approximately 180TB of data transfer between 

racks in Facebook HDFS per day, and there are multiple instances of high repair rates each day 
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[24]. Increased frequency of read requests will undoubtedly lead to an increase in access latency 

under the same conditions because there are fewer nodes. 

to store the information requested by a read request. When a storage node fails, no data is lost, and 

repair requests are prioritized over read/write operations to prevent data loss. Repair requests are 

prioritised over read requests, which may have a significant impact on access times. As a result, in 

this study, we will look into the impact of repair requests on read request latency. 

 

The study aims  

to identify the most effective methods for direct readings to reduce latency. 

Research Questions 

• What are the best methods for direct readings to minimize latency? 

 

RESEARCH METHODOLOGY 

Erasure codes and replications in distributed storage systems are one method for dealing with 

system failures [29]. Codes commonly used in practice are systematic codes, which means that 

each codeword contains a copy of the original data. Erasure coding can also be used in Windows 

Azure storage (WAS) systems, but only when a file reaches a certain size (for example, 3GB). If 

you only need a portion of the file, the storage nodes will be able to retrieve it from one of the 

codeword's massive files, which are frequently extremely large in practice (we refer to these as 

direct read requests) [31, 32, 33]. Requests for k-access reads, in which each request must read the 

entire file in a codeword and access Another type of request involves at least k nodes. Latencies 

in a distributed storage system vary according to the number of direct and k-access reads 

performed. To our knowledge, this is the first time that direct readings have been thoroughly 

investigated in any previous study [30]. 

Latency performance has been deemed "crucial in distributed storage systems, and some studies 

claim that codes can minimize latency in data centers, while many other strategies have been 

proposed to reduce latency in distributed storage" infrastructures. Previous research largely 

ignored direct readings and focused solely on k-access accesses. There has been no research into 

how RedS can speed up direct readings."RedS sends requests to all n nodes for each k-access read, 

the Random Scheme (RanS) Requests are only sent randomly to those k nodes. Compared to RanS, 

RedS necessitates a greater investment of time and resources. When it comes to practical 

distributed storage systems, RanS is a popular choice because it is simple to implement and does 

not require any additional information or resources. 

 

RESEARCH DESIGN 
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Redundant Request Technique (RedS) is a recently popular read scheme for (n, k) MDS-coded 

storage systems [34–36]. "Regardless of how many files a read request requests in a codeword, 

RedS divides it into n jobs and distributes them to each of the n nodes. When k nodes out of n have 

finished providing their services, the request is considered complete, and the remaining n k jobs 

are terminated immediately.  

We created a RedS-based solution that can handle requests for files of various sizes while reducing 

access latency. We refer to it as the Flexible Redundant Scheme (FRedS). 

 

DATA ANALYSIS  

In general, "To save your data using HTSC(D) or FH HTSC, you must combine your files into a 

single large one of size M, say 1 to 3 GB, and then divide it into K parts (D, h). The fixed size M 

can be calculated by combining the available storage space at each node with the parameters of 

HTSC(D, h) or FH FH HTSC. (D, h). Users are frequently only interested in a subset of a "file's 

uncoded systematic component," which is stored in one of the K nodes. Previous research assumed 

that readers would want access to the entire contents of a "Considering that every bit of information 

is now stored in the K-tree, the use of a codeword To put it simply, it is a significant change. 

However, this oversimplifies the situation rather than reflecting reality. In WAS, for instance, 

erasure coding is available only for files beyond a certain size threshold (say, 3GB) [31]. Most 

people only use a small portion of the 3GB available, so it's understandable that it's a waste. This 

corresponds to the HTSC's intended functionality (D, h). As a result, we will focus on read requests 

from customers who are only interested in a subset of the information stored in one of the K data 

nodes. "Inferences drawn from this research  

 

CONCLUSION  

In general, "To save your data using HTSC(D) or FH HTSC, you must combine your files into a 

single large one of size M, say 1 to 3 GB, and then divide it into K parts (D, h). The fixed size M 

can be calculated by combining the available storage space at each node with the parameters of 

HTSC(D, h) or FH FH HTSC. (D, h). Users are frequently only interested in a subset of a "file's 

encoded systematic component," which is stored in one of the K nodes. Previous research assumed 

that readers would want access to the entire contents of a "Considering that every bit of information 

is now stored in the K-tree, the use of a codeword to Describe it as a significant shift. However, 

this oversimplifies the situation rather than reflecting reality. In WAS, for example, erasure coding 

is only available for files larger than a certain size threshold (say, 3GB) [31]. Most people only 

use a small portion of the 3GB available, so it's understandable that it's a waste. This corresponds 

to the HTSC's intended functionality (D, h). As a result, we will focus on read requests from 
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customers who are only interested in a subset of the information stored in one of the K data nodes." 

Inferences drawn from this research. 

LIMITATIONS OF THE STUDY 

Because nodes and connections "must be protected," it is difficult to ensure effective security in 

distributed systems. Data and messages may be lost in the network as they move between nodes. 

In comparison to a single user system, the database for distributed systems is extremely complex 

and difficult to manage. If all of the distributed system's nodes attempt to "communicate data at 

once," the network may become overloaded. 
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