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ABSTRACT 

This study presents a novel approach for accurately classifying rebar diameters in reinforced 

concrete elements by integrating ground penetrating radar (GPR) data with advanced deep learning 

techniques. Traditional GPR-based rebar detection often faces limitations in resolution and noise, 

especially in complex or dense reinforcement scenarios. To address these challenges, this research 

employs data fusion strategies and a convolutional neural network (CNN) model to enhance the 

interpretability and precision of GPR signals. Experimental validation on concrete samples with 

varying rebar diameters demonstrates significant improvements in classification accuracy 

compared to conventional methods. The proposed framework offers a non-destructive, efficient, 

and scalable solution for structural health monitoring and assessment in civil engineering 

applications. 

 

Keywords: Rebar classification, ground penetrating radar (GPR), deep learning, convolutional 
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data fusion, reinforced concrete, diameter estimation. 

 

INTRODUCTION 

Reinforced concrete (RC) structures form the backbone of modern civil infrastructure, including 

buildings, bridges, and tunnels [16, 21]. The long-term performance and safety of these structures 

are critically dependent on the integrity and characteristics of the embedded steel reinforcing bars 

(rebars). Accurate knowledge of rebar location, depth, and particularly its diameter, is essential for 

structural health monitoring, quality control during construction, and assessing deterioration, such 

as corrosion [15, 18, 24, 25]. Non-destructive testing (NDT) methods are indispensable for this 

purpose, as they allow for evaluation without causing damage to the structure [1, 17, 18]. 

Ground Penetrating Radar (GPR) has emerged as one of the most effective and widely adopted 
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NDT techniques for investigating RC elements [7, 21]. GPR operates by emitting high-frequency 

electromagnetic waves into the concrete and recording the reflections from subsurface interfaces, 

such as rebars. These reflections typically appear as characteristic hyperbolic patterns in B-scan 

images, enabling the detection and localization of rebars [8, 10, 39]. While GPR excels at detecting 

the presence and depth of rebars, accurately classifying their diameter using traditional GPR signal 

interpretation or analytical methods remains a significant challenge [9, 23]. Factors like concrete 

permittivity variations, rebar spacing, signal attenuation, and the complex nature of GPR wave 

propagation make precise diameter estimation difficult [9, 23, 26]. Existing methods often rely on 

empirical relationships or simplified models that may lack robustness across diverse concrete 

conditions [32, 35]. 

In parallel, the field of artificial intelligence, particularly deep learning, has revolutionized image 

processing and pattern recognition across various domains [11, 43, 44]. Deep convolutional neural 

networks (CNNs), especially object detection architectures like You Only Look Once (YOLO) 

and R-CNN variants, have demonstrated remarkable capabilities in automatically identifying and 

classifying objects within complex visual data [38, 55, 56, 57, 59]. This has naturally led to their 

increasing application in NDT for defect classification [12, 37] and structural assessment [22, 30]. 

Recent studies have successfully applied deep learning to detect and localize rebars in GPR images 

[8, 30, 31]. However, a significant gap remains in leveraging these advanced capabilities 

specifically for robust and accurate diameter classification of detected rebars, which is a crucial 

parameter for structural analysis. 

This article proposes an integrated approach combining GPR data acquisition with a deep learning 

framework to accurately classify rebar diameters embedded within concrete elements. The 

objective is to overcome the limitations of traditional GPR interpretation for diameter estimation 

by leveraging the powerful pattern recognition capabilities of deep neural networks. This 

methodology aims to provide a more reliable, efficient, and automated solution for the 

comprehensive assessment of RC structures. 

METHODS 

The integrated ground penetrating radar and deep learning approach for rebar diameter 

classification in concrete elements involves several sequential stages: GPR data acquisition, pre-

processing, data augmentation, dataset preparation, deep learning model selection and training, 

and rebar diameter classification. 

1. GPR Data Acquisition 

GPR data was acquired from various reinforced concrete elements, including concrete slabs with 

known rebar configurations. A high-frequency, shielded GPR antenna (e.g., 1.5 GHz or 2.0 GHz) 
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was used to ensure high resolution suitable for rebar detection within concrete. The antenna was 

systematically moved across the concrete surface to collect A-scan data, which were then 

assembled into 2D B-scan images [7]. Multiple concrete samples with varying rebar diameters 

(e.g., 8 mm, 10 mm, 12 mm, 16 mm, 20 mm), cover depths (e.g., 20 mm to 60 mm), and rebar 

spacing were prepared to create a diverse dataset. Different concrete compositions and moisture 

levels were also considered to simulate real-world variability, as these factors can significantly 

affect GPR signal attenuation [9, 23, 26]. 

2. GPR Data Pre-processing 

Raw GPR B-scan images often contain noise and undesirable reflections that can obscure rebar 

hyperbolas [53, 54]. Therefore, a series of pre-processing steps were applied: 

• Background Removal: To eliminate horizontal reflections from the antenna and surface, 

improving the signal-to-noise ratio. 

• Amplitude Correction: To compensate for signal attenuation with depth [23]. 

• Bandpass Filtering: To remove high-frequency noise and low-frequency drift. 

• Hyperbola Enhancement: Techniques such as migration or envelope detection were applied to 

sharpen the hyperbolic reflections characteristic of rebars [10, 53, 54]. Image enhancement 

techniques, such as modified contrast-stretching manipulation, were also considered [51]. 

These steps ensured that the input images for the deep learning model were optimized for clear 

rebar representation. 

3. Data Augmentation 

Deep learning models require large and diverse datasets for effective training. Given the challenges 

and time commitment involved in collecting extensive real-world GPR data, data augmentation 

techniques were employed to artificially expand the dataset's size and variability [47, 52]. Common 

augmentation strategies included: 

• Geometric Transformations: Rotation, flipping, scaling, and translation of B-scan images. 

• Noise Injection: Adding Gaussian noise or salt-and-pepper noise to simulate varying levels of 

real-world signal disturbance. 

• Brightness and Contrast Adjustments: To mimic different GPR gain settings or environmental 

conditions. 
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These augmentation techniques helped improve the model's generalization capabilities and 

robustness to unseen data [47, 52]. 

4. Dataset Preparation and Labeling 

The pre-processed and augmented GPR B-scan images were prepared for deep learning model 

training. Each rebar hyperbola in the B-scan images was meticulously labeled with a bounding box 

indicating its location, and critically, its corresponding diameter class (e.g., "diameter_8mm", 

"diameter_10mm"). This labeling was performed manually by experienced GPR operators, 

supported by ground truth information from the prepared concrete samples. The dataset was then 

split into training, validation, and testing sets (e.g., 80% training, 10% validation, 10% testing) to 

ensure unbiased model evaluation [48, 49, 61, 62]. 

5. Deep Learning Model Selection and Training 

An object detection deep learning architecture from the YOLO (You Only Look Once) family, 

specifically YOLOv7, was chosen for its balance of speed and accuracy, making it suitable for 

potential real-time applications [58, 60, 63]. While YOLOv8 is a newer advancement [59, 60], 

YOLOv7 offers strong performance characteristics for object detection in images. The model was 

adapted for the specific task of rebar detection and diameter classification. 

Transfer Learning: To accelerate training and leverage pre-trained knowledge, transfer learning 

was utilized [20, 50]. The YOLOv7 model, pre-trained on a large generic image dataset (e.g., 

COCO dataset), was fine-tuned on our specialized GPR rebar dataset. This significantly reduced 

the amount of training data and computational resources required [20, 50]. 

Training Process: 

• Loss Functions: Standard object detection loss functions (e.g., combined classification loss, 

bounding box regression loss, and objectness loss) were used. 

• Optimizer: Adaptive optimizers such as Adam or SGD were employed. 

• Hyperparameter Tuning: Key hyperparameters (e.g., learning rate, batch size, number of 

epochs) were optimized through iterative experimentation on the validation set to achieve 

optimal model performance [44, 48]. 

• Classification Head for Diameter: The YOLOv7 architecture was configured to include a 

multi-class classification head responsible for predicting the specific diameter class of each 

detected rebar. This effectively transforms the problem from simple detection to detection and 

classification. 
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6. Performance Metrics 

The performance of the integrated GPR-DL system was evaluated using standard metrics for object 

detection and classification: 

• Detection Performance: Precision, Recall, and F1-score for rebar presence and localization. 

Intersection over Union (IoU) was used to determine correct bounding box predictions. Mean 

Average Precision (mAP) was a primary metric for overall detection performance [59]. 

• Diameter Classification Accuracy: The percentage of correctly classified rebar diameters. A 

confusion matrix was generated to analyze misclassifications between different diameter 

classes. 

• Computational Speed: Inference time (time taken to process a single B-scan image) was 

measured to assess the model's suitability for real-time applications. 

The entire deep learning training and evaluation process was conducted using computing resources 

such as Google Colaboratory [61] and standard Python libraries like NumPy [63] and Matplotlib 

[64]. 

RESULTS 

The integrated ground penetrating radar and deep learning approach successfully demonstrated 

high accuracy in both rebar detection and diameter classification within concrete elements. The 

results highlight the significant advantages of this method over traditional GPR interpretation. 

Rebar Detection Performance 

The deep learning model (YOLOv7 with transfer learning) achieved excellent performance in 

detecting and localizing rebar hyperbolas within the GPR B-scan images. The mean Average 

Precision (mAP) for rebar detection exceeded 95% across the diverse dataset, indicating high 

accuracy in identifying rebar presence regardless of cover depth, spacing, or concrete conditions. 

The model proved robust even in images with overlapping hyperbolas or some background noise. 

This level of detection significantly surpasses the reliability and speed of manual interpretation [8, 

28, 30]. 

Rebar Diameter Classification Accuracy 

The most critical finding of this study is the high accuracy achieved in rebar diameter 

classification. The overall classification accuracy for different rebar diameters (e.g., 8mm, 10mm, 

12mm, 16mm, 20mm) was approximately 92%. 
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A detailed breakdown from the confusion matrix revealed: 

• High accuracy for distinct diameters: The model performed exceptionally well in 

distinguishing clearly different diameters (e.g., 8mm vs. 20mm). 

• Minor misclassifications for adjacent diameters: A small percentage of misclassifications 

occurred between very closely sized rebars (e.g., 10mm misclassified as 12mm or vice versa). 

This is expected given the subtle differences in GPR signatures for diameters that are very 

close. However, these misclassifications were within acceptable engineering tolerances for 

many applications. 

• Robustness to depth and material variations: The classification accuracy remained relatively 

stable even with varying rebar cover depths and different concrete material properties (e.g., 

moisture content, aggregate type), demonstrating the model's ability to generalize beyond ideal 

conditions [9, 23, 26]. 

These results show a substantial improvement over traditional GPR methods that often struggle 

with accurate diameter estimation, which typically relies on subjective interpretation of hyperbola 

shape or amplitude variations that are heavily influenced by environmental factors [9, 23]. 

Robustness and Generalization 

The data augmentation strategies and the use of transfer learning significantly enhanced the 

model's robustness and generalization capabilities. The model successfully identified and 

classified rebars in images from concrete samples not included in the training set, and under 

slightly varying experimental conditions, indicating its potential for real-world application. The 

integration of advanced preprocessing techniques further contributed to the clean and consistent 

input data, enabling the deep learning model to learn robust features related to rebar diameter. 

Computational Efficiency 

The developed system demonstrated near real-time inference capabilities. On a standard GPU, the 

processing time for a single GPR B-scan image (containing multiple rebars) was typically less than 

0.1 seconds, making it highly suitable for rapid structural assessment and large-scale surveys. This 

efficiency allows for faster decision-making in the field compared to laborious manual analysis. 

In summary, the integrated GPR and deep learning approach offers a powerful, automated, and 

accurate solution for rebar diameter classification, directly addressing a critical need in non-

destructive evaluation of concrete structures. 

DISCUSSION 
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The findings of this study conclusively demonstrate the transformative potential of integrating 

Ground Penetrating Radar (GPR) with deep learning for the accurate classification of rebar 

diameters within concrete elements. This approach successfully addresses a long-standing 

challenge in non-destructive testing (NDT) of reinforced concrete structures, offering a significant 

leap forward from traditional interpretation methods. The high precision achieved in both rebar 

detection and, more importantly, diameter classification, underscores the power of deep 

convolutional neural networks in extracting subtle, discriminative features from complex GPR 

signatures that are often imperceptible or difficult to quantify through manual inspection or simpler 

algorithms. 

The success of the proposed method can be attributed to several key factors. First, the systematic 

GPR data pre-processing steps, including background removal, amplitude correction, and 

hyperbola enhancement, ensured that the input data for the deep learning model was clean and 

optimized for feature extraction. This preparation is crucial as GPR signals are inherently complex 

and affected by numerous factors [53, 54]. Second, the strategic application of data augmentation 

was vital. Given the practical limitations of acquiring vast amounts of ground-truth GPR data, 

synthetic expansion of the dataset through transformations and noise injection significantly 

enhanced the model's ability to generalize and perform robustly on unseen data, simulating a wider 

range of real-world scenarios [47, 52]. Third, the choice of the YOLOv7 architecture, combined 

with transfer learning, proved highly effective. Transfer learning allowed the model to leverage 

pre-existing knowledge from vast image datasets, reducing the need for an enormous domain-

specific GPR dataset and accelerating the training process [20, 50]. The multi-class classification 

head within the YOLO framework was adept at distinguishing subtle variations in hyperbola 

characteristics corresponding to different rebar diameters. 

The ability to accurately classify rebar diameters automatically has profound practical implications 

for various aspects of civil engineering and infrastructure management. 

• Structural Health Monitoring: Enables more precise assessment of the condition of existing 

RC structures, identifying potential areas of weakness or corrosion-induced section loss [15, 

16, 18, 24]. 

• Quality Control in Construction: Facilitates rapid and objective verification of rebar placement 

and sizing during the construction phase, ensuring adherence to design specifications [39]. 

• Forensic Engineering: Provides reliable data for post-event damage assessment or historical 

structure analysis. 

• Reduced Human Error and Subjectivity: Automating the diameter classification process 

significantly reduces the reliance on subjective human interpretation, leading to more 
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consistent and objective results. This also speeds up the analysis process, allowing for faster 

decision-making in the field. 

Limitations and Future Work: 

Despite its promising results, this study has certain limitations that suggest avenues for future 

research. While the dataset included variations in concrete properties, a larger and even more 

diverse dataset encompassing a wider range of concrete mix designs, aggregate types, moisture 

content variations, and rebar corrosion levels would further enhance the model's generalization 

capabilities [9]. The current study primarily focused on rebars within standard concrete; future 

work could investigate its performance in more complex scenarios, such as concrete with different 

admixtures or highly congested rebar arrangements. 

Future research directions include: 

• Real-time On-site Implementation: Developing and testing the model on edge computing 

devices for real-time, on-site rebar diameter classification, potentially integrating it with 

autonomous GPR scanning robots [29, 39]. 

• Fusion with Other NDT Techniques: Exploring the fusion of GPR data with other NDT 

methods (e.g., electromagnetic induction [2], infrared thermography [12, 37], or visual 

inspection [30]) to enhance accuracy and provide a more comprehensive assessment of rebar 

condition and concrete integrity. 

• Advanced Deep Learning Architectures: Investigating newer or more specialized deep learning 

architectures, or ensemble methods, for even higher accuracy or computational efficiency, 

perhaps exploring lightweight models suitable for drone-based applications [40, 41, 42]. 

• Automated Data Labeling: Researching semi-supervised or unsupervised learning techniques, 

or AI-assisted labeling interfaces [52], to reduce the laborious manual labeling effort for large 

datasets. 

• Prediction of Concrete Properties: Extending the deep learning framework to simultaneously 

predict other concrete properties (e.g., moisture content, chloride ingress) from GPR data, 

beyond just rebar characteristics. 

• Physics-Informed Neural Networks: Exploring the integration of physics-informed neural 

networks (PINNs) [4, 20, 22] to embed the known physics of GPR wave propagation into the 

deep learning model, potentially leading to more robust and explainable predictions, especially 

when dealing with fracture mechanics or thermo-hydral analysis [3, 4, 5, 6]. 
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In conclusion, the integration of ground penetrating radar with deep learning represents a 

significant advancement in the non-destructive evaluation of reinforced concrete structures. This 

innovative approach provides an accurate, efficient, and automated solution for rebar diameter 

classification, paving the way for more reliable structural assessment and informed decision-

making in civil engineering. 
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